運動控制和人工智能是人形機器人技術落地的核心難點。
一方面,人形機器人的機械構造、驅動和控制的復雜程度都遠G于現有的機器人。要使人形機器人像人一樣運動,并按要求執行任務,開發者需要設計合理G效的機械結構(骨骼), 根據各部位運動需求構建執行精度G的驅動系統(肌肉),并開發具有G度穩定性和適應性的控制系統(神經系統); 同時供應鏈層面的材料、芯片、電池系統、零部件等也需要持續提質和創新。
另一方面,要賦予人形機器人以一定的自 主性完成任務的能力,即實現一定程度的認知和決策智能,尚需要人工智能軟硬件(大腦)的G度發展,道阻且長。
人形機器人技術難點如下
涉及對環境的認知,以及路徑規劃、避障、制動等決策,與自動駕駛存在相似之處;但人形機器人工作環境非結構化,且活動形式是在三維空間中活動,所需決策可能更為復雜,需要人工智 能的進一步發展。
包括與人的交互和與物的交互,目前的技術距離讓機器人自主決定“怎么做”還很遙遠 , 要求人工智能軟硬件(算法+芯片)都發展到非常G的層次。
從保持站立,到穩定行走、實現跑動,每一步都存在挑戰。機械結構設計層面,需要合理 設計機器人腿腳結構,以及各部分的連接和運動方式;驅動層面,腿部輸出大扭矩的需求,需要G功 率密度的電機;計算和控制層面,規劃行走動作涉及多體運動和接觸建模相關的規劃和運算,實現有 適應性的穩定行走,以及跑動、轉彎等動作,則需要根據傳感器數據對動作進行實時調整,對控制算 法和控制器要求較G。
執行層面,要求更G精度的驅動,以及傳感器的閉環反饋;決策和控制層面,可 能涉及多傳感器融合、實時計算與調整等挑戰,以確保找到動作對象并施加適宜幅度和力度的動作。
滿足機器人復雜運算G能耗的需求,同時盡可能延長續航,對電池功率密度及電源管理系統 提出要求。
零部件小型輕質、集成方式優化;機器人本體材料創新。
散熱器件和材料的研發和創新;芯片設計制造的持續進步。
資料獲取 | ||||||
|
||||||
服務機器人在展館迎賓講解 |
||||||
新聞資訊 | ||||||
== 資訊 == | ||||||
» 機器人的自由度,直接影響到機器人的機動性 | ||||||
» 機器人系統的結構:機械手、環境、任務 和 | ||||||
» 2025年智能焊接機器人產業發展藍皮書: | ||||||
» 商用服務機器人控制系統的組成:任務規劃, | ||||||
» 具身智能工業場景,精準、重復的任務流程成 | ||||||
» 智能機器人的傳感器的種類:內部傳 感器和 | ||||||
» 前臺智能機器人對傳感器的要求:基本性能要 | ||||||
» 各地對具身智能核心發展需求:產業端落地, | ||||||
» 2025年中國具身智能產業發展規劃與場景 | ||||||
» 按控制方式進行分類,機器人分為二種:非伺 | ||||||
» 按機械手的幾何結構進行分類,機器人分為三 | ||||||
» 智能安防巡檢機器人的起源與發展歷史,De | ||||||
» 智能交互機器人的主要部件選型參考方案:伺 | ||||||
» 智能接待機器人的關節機構設計方案參考:運 | ||||||
» 智能接待機器人機構設計模型分析:機器人運 | ||||||
== 機器人推薦 == | ||||||
![]() 服務機器人(迎賓、講解、導診...) |
||||||
![]() 智能消毒機器人 |
||||||
![]() 機器人底盤 |
![]() |